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Two Formulas for the General Multivariate 
Polynomial Which Interpolates a 

Regular Grid on a Simplex 

By Coert Olmsted 

Abstract. Two formulas are exhibited for the multivariate Lagrange shape polynomials which 
interpolate a regular grid on a simplex in R ". 

1. Introduction. The idea of a shape function (or Lagrange) basis for an approxi- 
mating function subspace is fundamental to the finite element method, spline theory 
and interpolation procedures in general. Given a set of points (or nodes) in the 
domain of the approximants, a shape function is an approximant associated with a 
given node and which assumes the value 1 at that node and the value zero at all 
other nodes in the set. If we have a shape function for each node, we say that the set 
of shape functions is biorthonormal to the node set. It is then very natural to attempt 
to force an approximating function to interpolate the node set (i.e., to take on 
arbitrary values at the given points) by constructing it as a linear combination of the 
shape functions. The coefficients in the linear combination are the arbitrary values 
to be assumed and the biorthonormal property ensures, in an obvious and elemen- 
tary way, that this linear combination will indeed interpolate those values at the 
given nodes. Less obvious, but equally elementary, is the fact that biorthonormality 
of the shape functions implies that they are unique and linearly independent and so 
form a basis for the approximating subspace. 

To state all this precisely, let X be a vector space over an ordered field F of 
character zero, and let Y be a family of functions defined on X and with values in 
F, which is itself a vector space over F by means of the operations induced from F. 
Let X' be an (approximating) subspace of F of finite dimension N and let the node 
set P = {x(i)'}N I be a subset of X. Using straightforward arguments of elementary 
linear algebra, as is done by Davis in Chapter 2 of [1] and Thacher [5], [6], it is easy 
to prove the following 

FINITE LAGRANGE INTERPOLATION THEOREM. The following four statements are 

equivalent: 
(a) The node set P can be interpolated uniquely by functions of X', i.e., for any set of 
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N values { a} C F, there is a unique function p E X' such that p(x(i)) = ai for 
i= 1,...,N. 

(b) For any basis {ui})" 1 of X' the Gram matrix G = (uj(x(')))? =1 is nonsingu- 
lar. 

(c) There exists a Lagrange basis at P for X', i.e., there is a subset {li } =1 c X 

which is biorthonormal to P. Such a system is necessarily unique and linearly indepen- 
dent in X' and so forms a basis for X'. 

(d) The node set P does not lie in the null set of any nonzero function of X', i.e., for 
everyf = A', f(P) = (0) impliesf = 0. 

The first condition is, of course, what we want. The second and third are what we 
can compute, while the fourth logical variant gives useful heuristics both for the 
abstract algebra of the interpolation scheme, and for the analytic geometry of the 
node set. 

Although the proof of this theorem is elementary, it is instructive to work out one 
of the many possible cycles of implications in order to obtain some useful formulas. 
We use boldface notation to represent a column N-vector with components in F, 

V = (V1, V1, ... * VN)T, 

and denote the standard matrix and vector linear products by juxtaposition. 
(a) (d). The contrapositive of this implication follows easily since a nonzero 

interpolant which vanishes on the node set may be added to any solution of the 
interpolation problem to obtain a different function which also interpolates. This 
spoils uniqueness in (a). 

(b) , (a). This is the use of the Gram matrix which, if nonsingular, may be 
inverted to solve the linear system expressing the desired interpolant in terms of a 
given basis. Explicitly, this is 

(1.1) p(x) = u(x)TG-la. 

(c) (b). A basis {lj } is biorthonormal to P if lj (x(0))= 8ij, the Kronecker 
delta. In this case, G = (8ij) - I which is trivially nonsingular. Then (1.1) becomes 

(1.2) p(x) = 1(x)Ta. 

(d) , (c). This closing implication is not as obvious, but it also yields a useful 
formula. We construct a Lagrange basis as follows. For all u, v E A', define 

N 

?(U, V) = U u(X(k))V(x(k)) 
k=1 

The field properties of F and (d) show that 4 is an inner product on 3F. By the 
Gram-Schmidt procedure we may construct a basis { u1 } for A' which is orthonor- 
mal with respect to 4. That is, 

N 

(1.3) E ui(x(k))uj(x( k)) - I(ui, u) = 8ij, 1 < i, j < N. 
k=1 

Let G be the Gram matrix of this orthonormal basis. Then, by (1.3), 

GTG = (ui(x(k))uj(xk)) - (8ij) = J. 
k 



TWO FORMULAS FOR THE GENERAL MULTIVARIATE POLYNOMIAL 277 

This, incidentally, proves (b). Also, we have G'- = GT (i.e., G is orthogonal) and so 

(1.4) (8w) = I = GG-' = GGT = Uk(X(i))Uk(X(j)) 

Now define 

(1.5) 1i(X) = EUk(X(i))Uk(X), 1 < i < N. 
k 

Then, by (1.4), 

lI(Xi) = FUk(X(i))uk(X')) = i 
k 

and { li) is biorthonormal to P. This concludes the proof. 
The clear economy of (1.2) prompts us to seek out effective methods for determin- 

ing and evaluating the Lagrange shape functions. Indeed, while (1.5) works only for 
a particular orthonormal basis, we can, given any basis {fu}, take a. = aij, 
i, j = .. ., N in (1.1), to get 

(1.6) 1i(x) = u(x) G ei, 

where ei is the conventional ith unit basis vector in F N. Thus, we can represent our 
Lagrange basis in terms of any given basis by means of the columns of the inverse of 
its Gram matrix. 

Unfortunately, for conventional bases and most practical node sets, the Gram 
matrix and the Gram-Schmidt biorthogonalization are unwieldy or possibly ill-con- 
ditioned. We turn, therefore, to a particular case of some generality, where F is the 
real numbers, X is n-dimensional Euclidean space, X' is the space of multivariate 
polynomials of total degree m, and P is the intersection of the right unit simplex 
with the square lattice (1/m)N n. 

2. Notation and Definitions. 
2.1. The Multivariate Polynomial Function Space. Consider real Euclidean n-space 

Rn = { x = (x1,. .. xn): Xi x } 

with the standard vector and metric structure. Consider also n-tuples of nonnegative 
integers K = (K,..., Kn). If X E R , we write 

n 

(2.1) xK for the number H xi. 
i=1 

Following convention, we also write IKI for En I K1. Then, if IKI < m, we say that XK 

is a monomial function of degree < m on n . We may now write the general 
polynomial function of degree m on R n as 

p( x)=E aKx , 
|K | inE 

where the aK are real coefficients. We define the multi-index set for the coefficients 
and exponents as 

X K =(K1,** *, Kn) EKi m) 

where, since the Ki are nonnegative, the sum condition implies that Ki < m for 
1 <- i < n. 



278 COERT OLMSTED 

X3 
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FIGURE 1 

The simplex V in three-dimensional space (n = 3). 

If we consider all such polynomials as a subset of the linear function space 
C00(R "), we note that it is a subspace of finite dimension spanned by the monomial 
functions, (2.1). That they are linearly independent is a consequence of a theorem of 
multivariate algebra which we paraphrase from Jacobson [3, p. 112]. 

THEOREM. A multivariate polynomial over an infinite field is zero for all evaluations 
if and only if all its coefficients are zero. 

2.2. The Node Set. Consider the right unit simplex V C R n. If x E8 R n, we write 
At 

X0 = 1 - xE i 
i=1 

Then our simplex may be defined as 

V = f (XI, ..,Xn): O 1< Xi 1< 1, 0 < i < n). 
The n + 1st constraint, 0 < xo < 1, implies Eni=Ixi < 1, and so restricts x to a 
corner of the unit hypercube defined by the n other constraints. This corner contains 
the origin at its right vertex and is truncated by the hyperplane x0 = 0 which forms 
the slant face in the simplex. The perpendicular faces are defined by x, = 0, 
1 < i < n. The case n = 3 gives the simple geometry illustrated in Figure 1. 

We now select a finite set of node points P c V by restricting our domain to a 
regular orthogonal grid of spacing 1/m in each coordinate direction. Hence 

P = {(1/m)K: K E r}. 
These are just those points whose coordinates are nonnegative multiples of 1/m and 
which, since IK I < m, are confined to the simplex. Thus X also indexes our node set 
in a very natural way. 

If we define Ko analogously to x0 by 
fl 

Ko = m - Ki, 
i=1 

we have immediately 
fl 

Ki = m. 
i=O 
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Define 

.0 t(K9 K ... ** Kn) ICK, = m). 

The mapping (m - IJK, K1 ... i Kn1) *- K is clearly a bijection between X0 and Xr so 
that the two index sets are equinumerous. A simple combinatorial argument (Feller 
[2, 11.5.2]) shows that this size is N = ( m) = (n+m) Thus there are N of the 
monomial basis functions defined in Subsection 2.1 so that the dimension of the 
polynomial subspace also is N. 

2.3. The First Shape Function Formula. For our purposes we need to define a 
nodal shape polynomial of degree m for each point in P. To this end, let 
(1/m)K E P, and write 

(2.2) In,(x) = f( )I = ) mxi(mx l. (mxl-i+1) 
i =o i i =o Kj (Ki - 1) .. 2 * I 

where (a) is the conventional binomial coefficient defined for a e R and integer 
p > 0. To check that this is indeed a shape function, we observe that 

(a) 1t is of degree m. Clearly (m;j) is of degree K, so It is of degree E n 
OK, = m. 

In fact, I", is a product of exactly m linear factors. 
(b) l,7((1/m)K)= 1. Substitution of Kl/m for x, in (2.2) yields this result 

immediately since (K,) = 1. 

(c) 1,7 is zero at all nodes other than (1/m)K. To show this, we need a short 

LEMMA. If K' and K are distinct elements of YO, then there is a subscript q such that 
K/ < Kq. (Note that this relationship is necessarily symmetrical so that also there is a 
p * q such that Kp < K;.) Here we abuse notation slightly by writing K for an element 
of X0 as well as Y. It will always be clear from the context whether we mean 
K = (Kj, ... a Kn) or K = (KO, K, *.. ., Kn)- 

Proof of Lemma. Assume the contrary, i.e., for all q, K' > Kq. Then, since K' + K, 

we must have some p such that K' > K . These two inequalities imply %n OK' > 

0_ Ki, contrary to the sum condition defining X0%. Now, to demonstrate (c) above, 
let K' # K and, by the Lemma, K'q < K Then the numerator of (q) is 

Kq 

K/(K- i) (K - Kq) .(K. (Kq i)) = 0, 

and 1,7 ((1/m)K') has at least one zero factor and so is zero. 

3. Computing the First Formula. We have noted that I' has exactly m factors. If 
n > m then some of the members of the product in (2.2) must be unity. These 
factors correspond to the components of K which are zero. 

We notice that, while the formula notation of (2.2) is simple, compact and 
classical, because of the unit factors its implementation produces a cumbersome 
algorithm. Furthermore, if we want to differentiate (2.2), even more redundant 
computational steps are introduced as the nested products are proliferated by the 
chain rule. It would be best if the m factors could be exhibited explicitly. 



280 COERT OLMSTED 

4. The Node Labels. 
4.1. Introductory Example. For this purpose we introduce an alternate method of 

indexing the nodes, used by Leung and Ghaderpanah [4], which has the desired 
advantage of consisting of multi-indices of length m. While the set X is closely 
associated with the coordinates of the nodes, our set X of labels will be related 
more to the topology of their placement on the simplex. This is illustrated for the 
simple case n = 3, m = 2 in Figure 2. For labels we use ordered pairs of integers in 
the range 0, 1, 2, 3. The 4 vertices are labeled with (i, i) where i is the subscript of 
the coordinate axis passing through the vertex. The n + 1st vertex, the origin, is 
assigned (0, 0). The remaining 6 nodes are at the midpoints of the edges and so can 
be labeled (i, j), where the edge is between vertex (i, i) and (j, j). For uniqueness, 
we require i < j. Thus, we use all pairs of integers (i, j) such that 0 < i < j < 3 of 
which there are (2 2) = 10. By examining cases of higher degree and dimension, 
where the nodes populate the faces and subcells of the simplex in a regular way, we 
can extend the labeling scheme to the general case. 

x3 

2 . ~ ~ ~ x 

33 A n 
X2 

03 13 
802 1 2 

00 01 11 

FIGURE 2 

The node labels for the quadratic in three space (n = 3, m = 2, N = 10). 

4.2. Node Labels in Terms of Node Coordinates. Thus, define 

ah= ( V = (VI, - m): 0 <% V1 < V2 < * * < vm < no 
That there are N = (P?m) elements of X can be proved by a straightforward 
induction argument on m using elementary properties of the binomial coefficient. 
For our purposes, however, we need more than an enumeration. In order to express 
our shape function in terms of the node labels, we need to construct a correspon- 
dence between X and X. In fact, we can define a correspondence between X0 
and X by setting components of v to be the subscripts of the nonzero components 
of K. 

More precisely, given K = (KO, K1,..., Kn), let K s(1)g Ks(2) ... Ks(p) be the positive 
components in order that 0 < s(1) < s(2) < ... < s( p) < n. By the sum condition 
on X0, 

p 

E Ks(r) = m, 
r=1 
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and so we must have p < min(m, n + 1). Thus, the subscripts s are in the correct 
range, there are not too many of them, and they are in the proper order to serve as 
values for the components of v. Further, we are tying them to the nonzero 
components of K which are just those which contribute nonunit factors to the 
product in formula (2.2). What remains in setting up a unique correspondence is to 
show how the s's are distributed among the v's when p < m. We do this by 
repeating s(q), as a component of V, Ks(q) times. Thus, define the cumulative sum of 
the positive components of K as a function of the s index 

q 

c(q) = I, E Ks(r) if q > 1, 

0 if q =0. 

Then we may define the components of v as 

vj = s (q) if c (q - 1) < j < c (q). 

More explicitly, 

s(1) if 1 < j Ks 

s(2) if Ks(l) < j < Ks(l) + Ks(2) 

Vj = 
... I p-i s(p) if E Ks(r) < < E K s(r) m 

r=1 r=1 

Since s(q) and c(q) are strictly increasing integers with q, we can see that the vj are 
nondecreasing with j as it ranges over all integers from 1 to m. Thus all the 
conditions defining X are met. 

4.3. Equivalence of Node Labels and Coordinates. If we regard vj as a function of j, 
it is a nondecreasing integer-valued step function of p steps where the height of each 
step is given by the subscripts of the nonzero components of K and the width of each 
step is the integer value of that component. This is illustrated in Figure 3 by an 
example. 

The step function concept of v enables us to show that our correspondence is 
invective. Thus, for K + K', K, K' E _%, we wish to show that the corresponding 
labels v and v' are distinct. Consider three exhaustive cases: 

(a) p + p'. Then there will be a different number of steps in v' than in v. 
(b) p = p' but for some q, s(q) 0 s'(q). Then v and v' will differ in height at the 

qth step. 
(c) p = p', for all q, s(q) = s'(q). Then to have K # K' there must be some q such 

that Ks(q) $ Ks'(q) and the widths of the qth steps will be different. 
That our correspondence is surjective is more easily seen since we may write the 

inverse correspondence as 
m 

Ki = 8(i V1) < i< n, 
,j1 

where 8 is the Kronecker delta, now using functional argument notation. 
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n 5, m 4 5 
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0 L L 0 _1- 
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~s (q) 
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2- x 2- 

0-I j 0- IIIL 
1 2 3 4 1 2 3 4 

FIGURE 3 

Step function graphs of the intermediate stages in the correspondence between 
an example node coordinate index, the node label, and the local multiplicity. 

5. The Shape Functions in Terms of Node Labels. 
5.1. The Second Formula. The summation of the 8 function over v gives the 

multiplicity of occurrences of i in v which is just the value of the ith component of K 

from the definition. Let the local multiplicity, Xi, of a node label component, v;, be 
the number of its previous occurrences in v, 

I 

Xi = , 8 (Vr' Vi)v 
r= 1 

Thus, as j increases, AX will count the cumulative occurrences of identical values for 
v1 from 1 to its maximum multiplicity which is some component Ki Of K. 

Thus AX steps out the values 1, 2,..., K1 as long as v. is constant in v. Since there 
is a string of constant vj's in v for every nonzero Ki, we see that the transformation 
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of formula (2.2) becomes 
rn 

(5.1) lm(x)=H(mx -A? + 1)/A1. 
j=l 

For the reader who has meticulously followed the mappings from K to v to A 
defined above, it will be apparent that the formulas (2.2) and (5.1) represent the 
identical expression, even to the order of the factors. For the less than meticulous, 
we can show that the two formulas produce the same polynomial function by 
proving that the second polynomials are biorthonormal to P. The identity of the two 
polynomial functions then follows from the uniqueness of the Lagrange basis. The 
proof necessarily echoes the proof for formula (2.2). 

Thus, let 

lm((11M)K )= H (Kj - A1 + 1)/AX. 
j=1 

From our remarks above we have for each distinct component of P, 

Xj= 1,2,... , Kjl 

while 

K~i Ai + 1 KVj9 KVi-1, 
... * ,1. 

Thus numerator and denominator consist of the same numbers in reverse order so 
that the entire quotient is 1. 

Now let K E Y and K' 0 K. By the Lemma of Subsection 2.3 there exists a 
subscript q such that K'q <Kq. From the definitions of v and A there is a j such that 

vi = q 

and forI-kq+ 1< i < j. 
xi =Kq - i + ) 

Since K'q < Kq, there is one such i such that AX = K' + 1 and vi =q. For this i the 
factor in 

m 

l"((1/m)K') = H (K, - A1 + 1)/A1 
j=l 

is 

(K - Ai + 1)/A, = (Kq - A, + 1)/Ai = 0. 

This completes the proof of biorthonormality. 
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